

Date: 11-11-2024

Dept. No.

Max. : 100 Marks

Time: 09:00 am-12:00 pm

SECTION A

Answer ANY FOUR of the following

4 x 10 = 40 Marks

1. If V is a vector space over F , then prove the following:
 - (i) $\alpha \cdot 0 = 0$, for all $\alpha \in F$
 - (ii) $0 \cdot v = 0$, for all $v \in V$
 - (iii) $(-\alpha)v = -(\alpha v)$, for all $\alpha \in F, v \in V$
 - (iv) if $v \neq 0$, then $\alpha v = 0$ implies $\alpha = 0$.
2. State and prove Schwarz inequality.
3. If V is of finite dimensional vector space over F , then show that $T \in A(V)$ is singular, if and only if there exists a non-zero vector $v \in V$ such that $vT = 0$.
4. If V is of finite dimensional vector space over F , then $S, T \in A(V)$, then prove the following:
 - (i) $r(ST) \leq r(T)$
 - (ii) $r(TS) \leq r(T)$
5. Prove that if $T \in A(V)$ is unitary if and only if $TT^* = 1$.
6. Let F be a field and let V be the set of all polynomials in x of degree $n-1$ or less over F . On V let D be defined by $(\beta_0 + \beta_1 x + \dots + \beta_{n-1} x^{n-1})D = \beta_1 + 2\beta_2 x + \dots + i\beta_i x^{i-1} + \dots + (n-1)\beta_{n-1} x^{n-2}$. It is trivial that D is a linear transformation of V . What is the matrix of D ?
7. If N is normal and $AN = NA$, then show that $AN^* = N^*A$.
8. If $W \subset V$ is invariant under T , then show that T induces a linear transformation \bar{T} on $\frac{V}{W}$, defined by $(v+W)\bar{T} = vT+W$. Further, If T satisfies the polynomial $q(x) \in F(x)$, then so does \bar{T} . And if $p_1(x)$ is the minimal polynomial for \bar{T} over F and if $p(x)$ is that for T , show that $p_1(x) \mid p(x)$.

SECTION B

Answer ANY THREE of the following

3 x 20 = 60 Marks

9. If V is the internal direct sum of U_1, U_2, \dots, U_n then show that V is isomorphic to the external direct sum of U_1, U_2, \dots, U_n .
10. State and prove Gram Schmidt orthogonalization process.
11. Prove that $\text{Hom}(V, V)$ is an algebra over F .
12. If $(vT, vT) = (v, v)$ for all $v \in V$, then show that T is unitary.
13. If $T \in A(V)$ has all its characteristic roots in F , then prove that there is a basis of V in which the matrix of T is triangular.
14. “The linear transformation T on V is unitary if and only if it takes an orthonormal basis of V into an orthonormal basis of V ” – Justify.

\$\$\$\$\$\$\$\$\$\$\$\$\$\$